合聚咖

合聚咖

参数估计

admin

参数估计是统计推断的一种。

参数估计是根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,区分为点估计与区间估计:从构造估计量的方法讲,有矩法估计、最小二乘估计、似然估计、贝叶斯估计等。

要处理两个问题:(1)求出未知参数的估计量;(2)在一定信度(可靠程度)下指出所求的估计量的精度。信度一般用概率表示,如可信程度为95%;精度用估计量与被估参数(或待估参数)之间的接近程度或误差来度量。

参数估计的标准特点:

1.无偏性

无偏性是指估计量抽样分布的数学期望等于总体参数的真值。无偏性的含义是,估计量是一随机变量,对于样本的每一次实现,由估计量算出的估计值有时可能偏高,有时可能偏低,但这些估计值平均起来等于总体参数的真值。在平均意义下,无偏性表示没有系统误差。

2.有效性

有效性是指估计量与总体参数的离散程度。如果两个估计量都是无偏的,那么离散程度较小的估计量相对而言是较为有效的。离散程度是用方差度量的,因此在无偏估计量中,方差愈小愈有效。

3.一致性

一致性,又称相合性,是指随着样本容量的增大,估计量愈来愈接近总体参数的真值